

UMATAC Industrial Processes

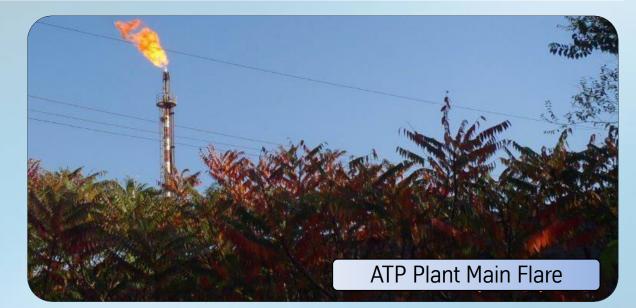
Fushun ATP Project Update & Value Added Processing

Colorado School of Mines 35th Oil Shale Symposium (Salt Lake City) October 5, 2015

ThyssenKrupp Industrial Solutions

FMG Operation Update

Plant Operation Improvements:


- \rightarrow 115 day run length achieved.
- → 80% overall plant availability (95% of design target).
- \rightarrow 95% ATP Processor availability.

Challenges:

- Equipment reliability.
- Bottlenecks.
 → 87% of design feed rate.
- Low ore grade from mine.
 - → Low grade = low oil production and low coke yield (primary fuel source).

Opportunities:

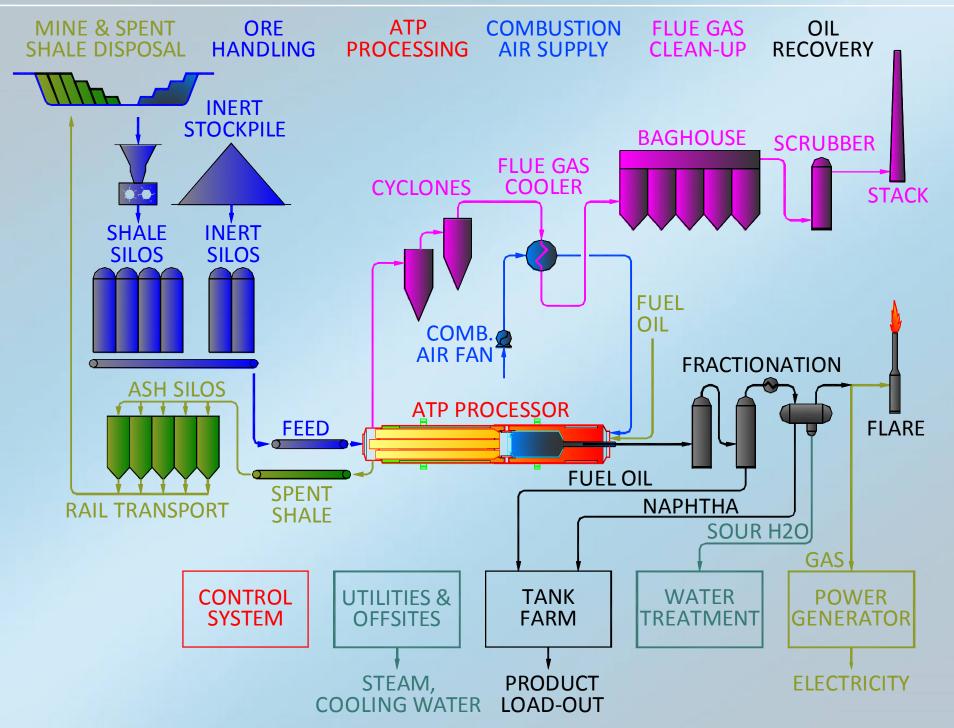
- Used tire pyrolysis.
 - → Low CAPEX for tire shredding. High OPEX for tire collection.
 - \rightarrow No modifications to ATP.
 - \rightarrow Plant oil production +20%.

UMATAC Industrial Processes

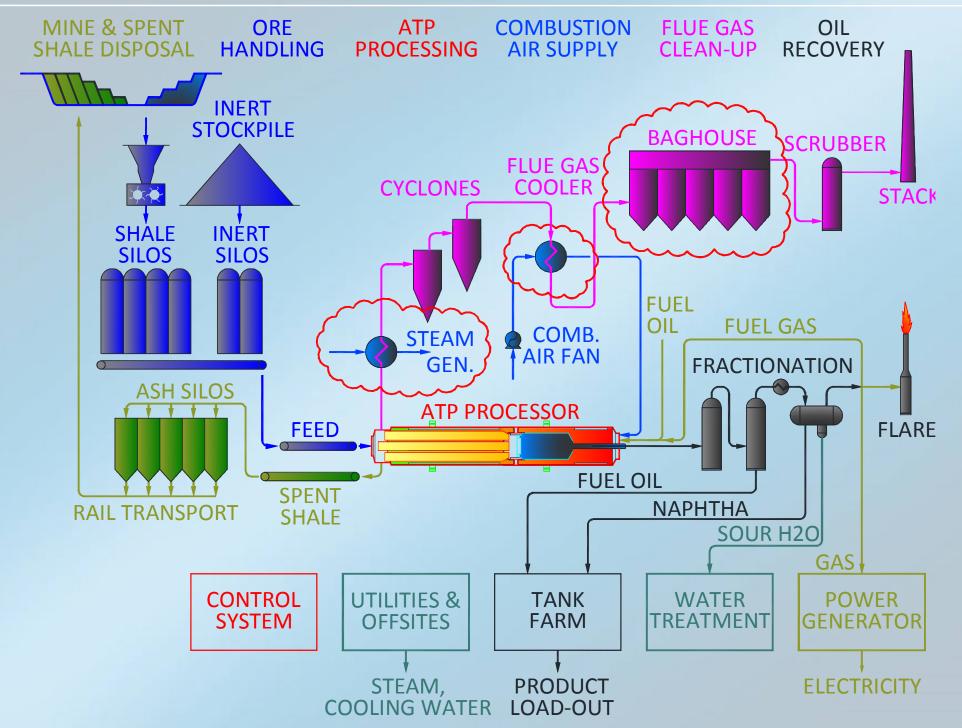
FMG ATP Plant - 2014/15 Operations Update

UMATAC Industrial Processes

Start Date	Run Length	Feed Rate	Notes
Jul. 2014	40 days	160-180 t/h	FMG sets goal of improving operability.
Oct. 2014	30 days	160-180 t/h	Operating error shuts down oil recovery system.
Dec. 2014	70 days	160-180 t/h	Train derailment disrupts shale supply, ATP burner modified to burn fuel gas.
Feb. 2015	50 days	120-160 t/h	Baghouse bag blinding, plant operates through minus 30°C weather.
Apr. 2015	115 days	140-180 t/h	Equipment reliability challenges (i.e. 115 days of operation plus ~12 days of short unplanned outages).
Sep. 2015	> 100 days	180-230 t/h	Partial install of high capacity baghouse bags, new flue gas boiler.


FMG ATP Plant - Availability

UMATAC Industrial Processes


FMG ATP Plant - Flowsheet

UMATAC Industrial Processes

FMG ATP Plant – Bottleneck Modifications

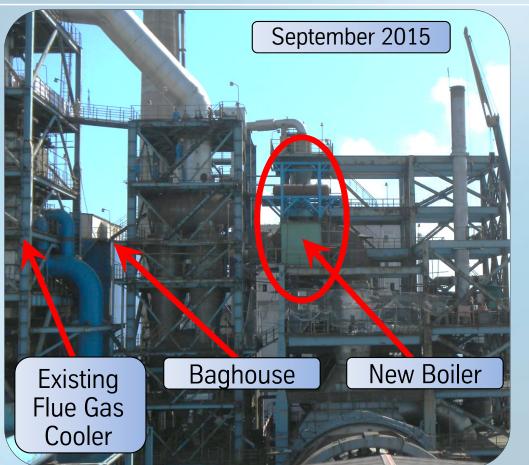
UMATAC Industrial Processes

Flue Gas Steam Boiler & Baghouse Bags

UMATAC Industrial Processes

A company of ThyssenKrupp Industrial Solutions

Flue Gas Cooler / Air Preheater

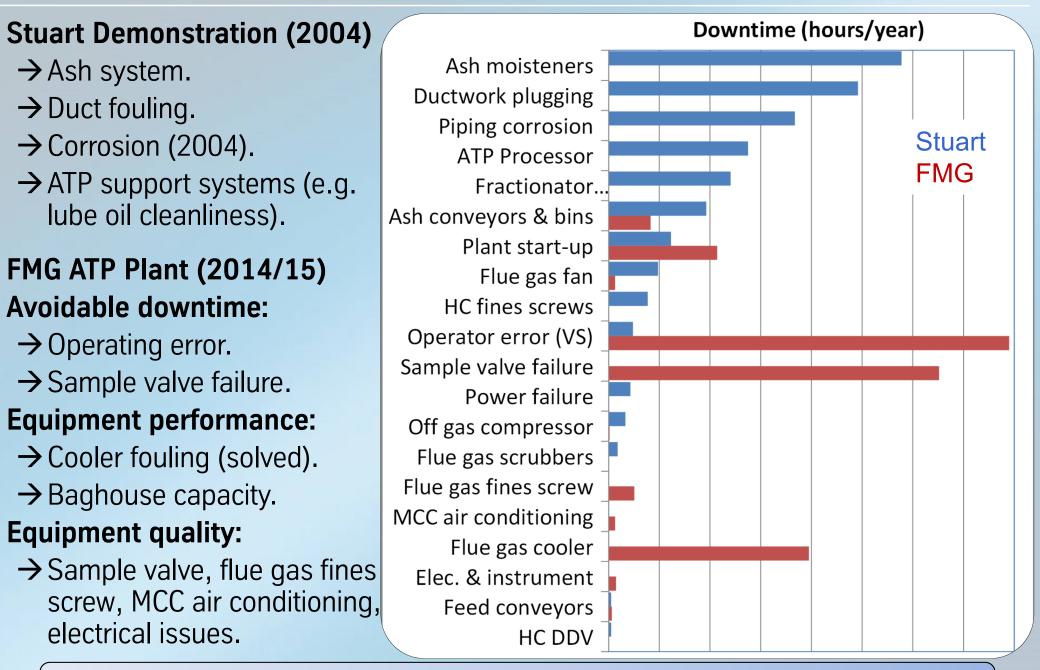

• Fouling issues from 2014 solved, but solution reduced cooler capacity.

Flue Gas Steam Boiler

 New steam boiler installed – increases flue gas system capacity and produces utility steam.

Result

- 1 MPa steam produced and ATP feed rate increased to >200 t/h.
- High capacity baghouse bags to be installed. ATP rate to 100% of design.



Unplanned Downtime Comparison

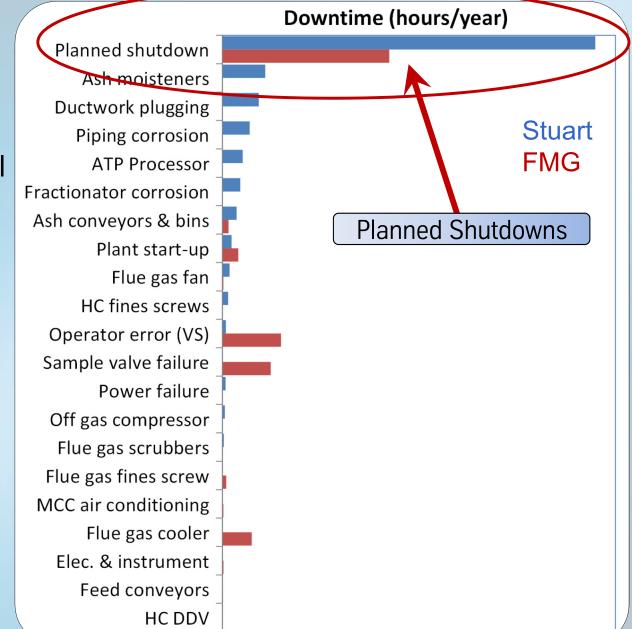
UMATAC Industrial Processes

A company of ThyssenKrupp Industrial Solutions

Learnings from Demonstration Plant Implemented; New Challenges at FMG.

Total Downtime Comparison

UMATAC Industrial Processes


A company of ThyssenKrupp Industrial Solutions

Stuart Demonstration (2004)

- Lengthy planned shutdowns.
- Organizational constraints.
- ATP retort rear support routine maintenance usually the critical path.

FMG ATP Plant (2014/15)

- Turnaround duration greatly improved (target 10 days).
 - → FMG focus on turnaround performance!
 - → ATP retort rear support eliminated.
 - → Plant approaching design availability (85%).

Turnaround Time Significantly Reduced with Good Engineering and Planning

Value Added Processing

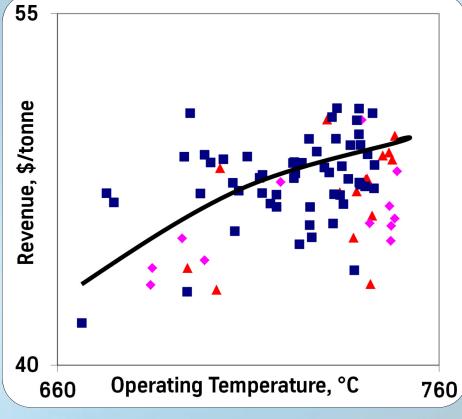
West Pit Mine is Closed.

- Pilot testing and design were done on West Pit ore: 7% oil yield, 5% free water.
- Excellent particulate physical strength.

East Pit Opened – ore grade during early years of mine operation will be low.

- 2015 operations used East Pit ore. 4-7% oil, 5-8% water = low oil production.
- Lower particulate physical strength, resulting in higher fines generation.

Value Added Processing


Oil Shale Processing:

- Maximize revenue & profit:
 - \rightarrow Operate at highest availability.
 - \rightarrow Minimize waste disposal cost & OPEX.
 - \rightarrow Overall yield vs. most valuable yield. Maximum yield \neq maximum revenue.

Other Opportunities:

- Large scale pyrolysis system, oil recovery system, infrastructure in place.
- Other readily available hydrocarbon bearing materials?
 - \rightarrow Charge to process material (e.g. oilfield wastes): \$/tonne feed processed.
 - \rightarrow High oil yield feedstocks (e.g. rubber, plastic): \$/bbl oil produced.
- Expend minimal capital, don't impact existing plant operability.

TAC Industrial Processes

Example – Used Tire Pyrolysis

Addition to Existing Oil Shale Pyrolysis Plant:

Low grade East Pit ore:

- \rightarrow 2000 bbl/d from 2500 bbl/d plant.
- Fushun oil shale ore yields 50 to 80 L/t
- Used rubber tire yields 575 L/t
- Zillions of used tires in Shenyang/Fushun region.
- Process 120 t/d of tires = 3.7 million tires/year.

Revenue: \$8 to 24 MM/a

- Environmental fee \$4/tire = \$15.0 million/a
- 20 t/d of steel @ \$250/t = \$ 1.5 million/a
- 375 bbl/d oil, @ \$35/bbl = \$ 4.0 million/a
- 7 MWt gas \rightarrow 2 MWe = \$ 1.8 million/a
- 11 MWt coke \rightarrow 3 MWe = \$ 2.2 million/a (displaces current fuel gas use).

Cost to collect tires is major expense. "Tire Tax" is incentive for recyclers in some jurisdictions.

Tire Shredding

Tire derived oil improves quality of Fushun raw shale oil product.

MATAC Industrial Processes

Example – Used Tire Pyrolysis

Addition to Existing Oil Shale Pyrolysis Plant:

CAPEX: \$5-10 MM

- Stockpiles, shredding, conveying systems.
- No additional CAPEX for pyrolysis system.

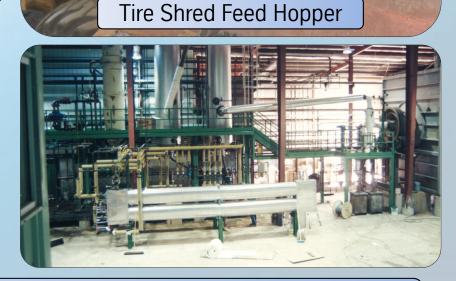
OPEX: \$5-10 MM/a

- Tire collection: \$6-10 MM/a (location specific)
- Shredding system: \$2 MM/a

Revenue: \$8-24 MM/a (location specific)

Environmental benefit: Small, polluting "Illegal tire oil extraction" pyrolysis plants displaced.

Standalone Tire Pyrolysis Plant:


CAPEX: \$30 to 80 MM

 Shredding, pyrolysis, coke processing plants; product shipping, utilities, offices, maintenance shops, fire protection...)

OPEX: \$12-30 MM/a

Revenue: \$13- 29 MM/a (carbon +\$9, gas -\$4 MM/a)

Standalone facility = \$30 to 80 MM CAPEX. Shale plant add-on < \$10 MM

MATAC Industrial Processes

Summary

Availability:

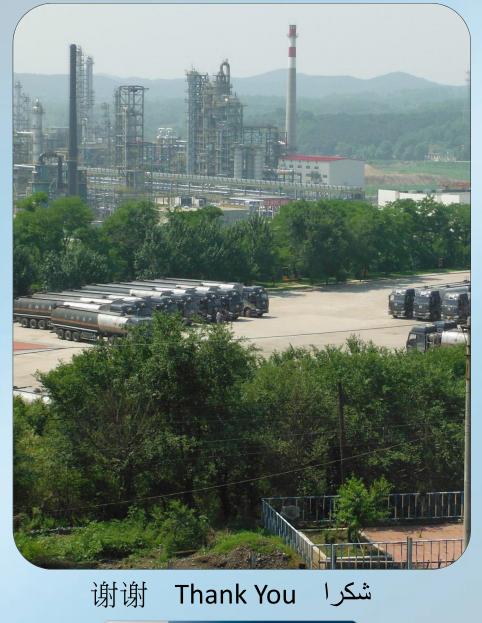
- ATP plant availability >80% (target 85%).
- Run length >100 days (target 90 days).
- Maintenance turnaround ~10 days.

Throughput:

- Plant has reliably achieved > 90% of plant design oil shale feed rate.
- ATP Processor is working well & handling ore much different than design.

Opportunities:

- Price of oil & low grade oil shale are economic challenges.
- Further improving plant operation.
- Co-processing alternate feedstocks to increase revenue.


TKIS and FMG Operating Team

UMATAC Industrial Processes

Questions?

UMATAC Industrial Processes

A company of ThyssenKrupp Industrial Solutions

ThyssenKrupp

Contact Information

UMATAC Industrial Processes Inc. Suite #110, 6835 Railway Street S.E. Calgary, Alberta, Canada T2H 2V6

Telephone:	+1-403-910-1000
Facsimile:	+1-403-910-1040

email:umatac@thyssenkrupp.comweb:www.umatac.ca